8 resultados para Computer software--Development

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offshore software development has been identified as one of the most striking manifestations of contemporary globalisation and as evidence of placelessness, the idea that information and communication technologies have rendered location irrelevant. Research in the International Business and Information Systems fields, in contrast, has suggested that all locations are not equal and has identified a number of characteristics that may influence the attractiveness of a location for multinational investment and offshoring, respectively. These literatures, however, focus almost exclusively on quantitative, economic characteristics that are seen as fixed and applying uniformly throughout a whole country. They therefore offer little guidance on the suitability of particular locations as offshoring destinations, especially in countries without a track record in offshore software development. Drawing on two cases of nearshore software development centres set up by offshore service providers in the Caribbean, this paper illustrates that, while the initial decision to establish the ventures reflected a logic of placelessness, characteristics of these particular locations affected their subsequent success. Through the findings, we therefore develop a typology of espoused, unanticipated and remediable locational characteristics, which illustrates that locational attractiveness may vary significantly within countries and that offshore service providers and government agencies can modify locational characteristics to their advantage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Software importance keeps growing fast and consistently for many organizations. The growth of software functionality in manufactured products and the emergence of digital media, convergent spaces including digital content, software, and multi-channels to the market, are recent examples of organizational changes where software assumed a central position for the corporate strategy. This paper analyzes the alignment between strategic objectives and software development processes at software companies and proposes a methodology to ensure that development processes are aligned with the corporate capabilities required to exploit future market opportunities. The methodology includes the categorization of different software companies according to their core capabilities and the customization of the technology roadmapping technique for software companies. The research process included the realization of case studies and a survey. (c) 2006 PICMET.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. FINDINGS: Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. CONCLUSIONS: BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology.BarraCUDA is currently available from http://seqbarracuda.sf.net.